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Warszawa, Poland; e-mail: jan.derezinski@fuw.edu.pl

3Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West,
Montreal, Quebec, H3A 2K6, Canada; e-mail: jaksic@math.mcgill.ca

Received June 2, 2003; accepted July 24, 2003

We consider a general class of models consisting of a small quantum system S

interacting with a reservoir R. We compare three applications of 2nd order per-
turbation theory (the Fermi Golden Rule) to the study of such models: (1) the
van Hove (weak coupling) limit for the dynamics reduced to S; (2) the Fermi
Golden Rule applied to the Liouvillean—an argument that was used in recent
papers on the return to equilibrium; (3) the Fermi Golden Rule applied to the so-
called C-Liouvillean. These three applications lead to three Level Shift Opera-
tors. As our main result, we prove that if the reservoir R is thermal (if it satisfies
the KMS condition), then the Level Shift Operator obtained in (1) (often called
the Davies generator) and the Level Shift Operator constructed in (2) are con-
nected by a similarity transformation. We also show that the Davies generator
coincides with the Level Shift Operator obtained in (3) for a general R.

KEY WORDS: Fermi Golden Rule; open quantum system; Markovian genera-
tors.

1. INTRODUCTION

In his 1949 Chigaco lecture notes, (11) Fermi called the formulas for the 2nd
order perturbative calculations of energy levels the Golden Rule. There
exists a number of mathematically rigorous implementations of the Fermi
Golden Rule (FGR). One of them is the so-called van Hove (or weak
coupling) limit.



To describe the general structure of the van Hove limit, consider a
family of operators Ll :=L0+lQ. Let P be a projection commuting with
the unperturbed operator L0 satisfying PQP=0. Under appropriate
assumptions, (4, 6) one can show that there exists an operator C such that

lim
lQ 0

Pe−itL0/l
2
e itLl/l

2
P=e itC. (1.1)

We will call C the Level Shift Operator (LSO).
In the literature one can find other rigorous forms of FGR. They

usually express the idea that LSO describes the shift of eigenvalues and
resonances at the 2nd order of perturbation theory. Some of these applica-
tions are discussed in refs. 8 and 9. For shortness, in this note we will
restrict ourselves to the dynamical form of FGR—the van Hove limit.

There exist numerous papers studying a ‘‘small quantum system S
interacting with a reservoir R.’’ In many of them the Fermi Golden Rule
plays a central role. Among these applications of FGR to the study of
S+R we would like to distinguish the following 2 types:

(1) Van Hove Limit for the Reduced Dynamics. We assume that the
reservoir is initially in a stationary state for the unperturbed dynamics. We
look at the evolution of observables of the small system. One can then
show that under mild conditions the reduced dynamics in the van Hove
limit is a completely positive semigroup. (4, 22) The operator C obtained in
this way (the generator of this semigroup) is often called the Davies
generator. This construction is regarded as an example of how irreversible
behavior can emerge from a reversible Hamiltonian dynamics.

(2) Fermi Golden Rule Used in Recent Works on the Return to
Equilibrium. The main goal of a number of recent papers (3, 8, 15, 21) is to
prove that if the reservoir is in thermal state, then the coupled system
S+R has only one normal stationary state. This problem can be refor-
mulated into a question about point spectrum of a certain naturally defined
self-adjoint operator—the Liouvillean. An argument based on FGR leads
to an appropriate LSO. Analysis of this LSO is the key step in the proof of
a number of results related to the return to equilibrium. (8)

Let us stress that both in (1) and (2) we consider the same physical
systemS+R. Nevertheless, these two applications are quite different.

The difference that is visible at the first sight is that in (1) we use the
van Hove limit, whereas in (2) we use the spectral form of FGR. This dif-
ference is due to our physical motivation. Mathematically, one can also
consider the van Hove limit for the Liouvillean, even though to our
knowledge it does not have a clear physical significance.
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The more important difference is that in (1) and (2) P and Ll are dif-
ferent mathematical objects. In (1) exp(itLl) is the Heisenberg dynamics of
the algebra of observables, whereas in (2) Ll is the so-called standard
Liouvillean. In (1) P is the conditional expectation onto the observables of
S, whereas in (2) P is the orthogonal projection onto the vacuum sector.
The LSO obtained in (1) is different from the LSO obtained in (2). In par-
ticular, the two LSO’s have different spectra. Note, however, that both
LSO’s act on the same space: the space of matrices describing the
observables of the small systemsS.

The main result of our paper is the proof of the following fact: if the
reservoir is in thermal equlibrium, then the two LSO’s are related by a
similarity transformation. Thus, in particular, in the thermal case, they are
isospectral.

Our result is an example of special properties enjoyed by thermal
equilibrium states. (2) In order to formulate it we need to use some (relati-
vely few) concepts belonging to the area of operator algebras. In particular,
the fact that the reservoir is in thermal equilibrium is expressed by the
KMS condition of the reservoir state wrt the unperturbed dynamics.

In this note we also consider a 3rd application of the Fermi Golden
Rule to the study of small systems coupled to a reservoir. In this applica-
tion the main object is the so-called C-Liouvillean introduced in ref. 19. We
show that this application is essentially equivalent to (1).

2. SMALL QUANTUM SYSTEM INTERACTING WITH A RESERVOIR

We will freely use the language and notation of algebraic quantum
statistical mechanics and Tomita–Takesaki modular theory. The
books (1, 2, 13, 27, 28) are standard references. A modern exposition can be also
found in the recent article. (10)

Consider a small quantum system S interacting with a reservoir R.
The Hilbert space of the system S is K and its Hamiltonian is a self-
adjoint operator K. Its algebra of observables is B(K), the Banach space
of all bounded operators onK. Throughout the paper we will assume that
dimK <..

The system R is described by a Wg-dynamical system (MR, yR). We
assume thatMR is given in the standard form on the Hilbert spaceHR, and
we denote by H+

R, JR, and LR the corresponding natural cone, modular
conjugation, and standard Liouvillean. We also assume that (MR, yR) has
a distingushed normal stationary state and we denote by WR its (unique)
vector representative inH+

R. |WR)(WR | denotes projection on WR.
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The coupled system S+R is described as follows. Its algebra of
observables is

M=B(K) éMR,

and its freeWg-dynamics is

y t0(A)=e itL
semi
0 Ae−itL

semi
0 , A ¥M, (2.2)

where

L semi
0 =K é 1+1 é LR. (2.3)

Let V ¥M be a selfadjoint perturbation and l a real parameter. The
assumption that V is bounded is made only for simplicity of exposi-
tion—the discussion of unbounded perturbations affiliated to M is very
similar except for a number of additional technical assumptions (see
Section 5). Let

L semi
l =L semi

0 +lV,

y tl(A)=e itL
semi
l Ae−itL

semi
l .

The Wg-dynamical system (M, yl) describes the interacting system S+R
in the so called semistandard representation. This representation is com-
monly used in the literature on Markovian semigroups of open quantum
systems.

Following the terminology of ref. 9, the operators L semi
0 and L semi

l are
called the free and full semi-Liouvilleans respectively.

A typical example of the reservoir system is a free Fermi or Bose gas
in thermal equilibrium at inverse temperature b > 0. The reservoir may also
have a composite structure and consist of N-subreservoirs at different
temperatures (such reservoirs have been studied in the literature on non-
equilibrium quantum statistical mechanics, see refs. 18, 19, 22, and 26). For
our purposes, it is natural to keep the reservoir system as general as
possible.

The effect of the reservoir on the dynamics of S in the weak coupling
regime (l small) has been subject of many studies. A traditional approach
to this question has been to integrate the variables of the reservoir and
follow the reduced dynamics of the small system on the Van Hove time
scale t/l2. In the Van Hove weak coupling limit lQ 0, the reduced
dynamics of S becomes Markovian and irreversible. Its generator—often
computed by a formal Fermi Golden Rule calculation—captures the basic
physical processes (energy emission/absorption) of open quantum system
S to the 2nd order of perturbation theory.
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This approach can be traced back to the works of Pauli, Wigner-
Weisskopf and Van Hove, (23, 24, 29, 30) and has become a source of many
works in physics literature (see, e.g., refs. 14, 20 for references and addi-
tional information).

On the mathematical side, the first complete results concerning exis-
tence of the Van Hove limit and form of the Markovian generator were
obtained by Davies. (4, 5) These papers were followed by a large body of
mathematical physics literature (see ref. 12 for a review of early results).
The Davies theory and early mathematical results in the theory of Marko-
vian generators of open quantum systems are discussed in detail in the
forthcoming article. (9)

The integration of the reservoir variables is formalized as follows. We
will work in the Heisenberg picture. For B é C ¥B(K éHR) let

PH(B é C)=(WR | CWR) B é 1.

The map PH uniquely extends to a projection on the Banach space
B(K éHR). We identify B(K) with Ran PH by B(K) ¦ BW B é 1.
Obviously, for X, B ¥B(K),

TrK éHR
(X é |WR)(WR | y

−t
0 y

t
l(B é 1))=TrK(XPHy

−t
0 y

t
lPHB).

The maps

T tl :=PHy
−t
0 y

t
lPH : B(K)QB(K) (2.4)

describe the reduced dynamics of S in the Heisenberg picture. The family
{T tl}t \ 0 is not a semigroup. However, one expects that T

t/l2

l converges to a
semigroup as lQ 0. This limiting semigroup describes the dynamics of
open quantum systemS in the Van Hove weak coupling limit.

For our purposes, the only important thing is that the Van Hove weak
coupling limit exists and particular conditions which quarantee the exis-
tence of the limit are inessential. Hence, we postulate:

Assumption 2.A. There exists an operator CH: B(K)QB(K)
such that for t \ 0,

lim
lQ 0

PHy
−t/l2

0 y t/l
2

l PH=e itCH. (2.5)

We will call the operator CH the Davies generator in the Heisenberg
picture. A Fermi Golden Rule computation yields that

CH=lim
E q 0

C
e ¥ sp([K, · ])

1e([K, · ])([V, · ])(e+iE−[L semi
0 , · ])−1 ([V, · ]) 1e([K, · ])

(2.6)
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(sp(A) stands for the spectrum of the operator A and 1e(A) for the spectral
projection onto e ¥ sp(A)), and indeed one can prove this formula under
very general conditions (see refs. 4 and 9). However, the specific form of CH
will not concern us here.

In the last several years there has been a revival of interest in rigorous
mathematical study of the models (M, yl). These studies were based on
mathematical techniques (Tomita–Takesaki modular theory, quantum
Koopmanism, Mourre theory, spectral complex deformations) which
allowed for detailed understanding of the dynamics. The emerging picture
is that ergodic properties and thermodynamics of the system S+R
are controlled by spectral resonances of two operators, the standard
Liouvillean and C-Liouvillean, canonically associated to the pair (M, yl)
by Tomita–Takesaki modular theory. (15, 16, 18, 19) A natural and important
question is how is the spectral Fermi Golden Rule for these resonances
related to the generator CH. To describe the answer we will consider sepa-
rately the thermal equilibrium and the nonequilibrium case.

3. THERMAL EQUILIBRIUM CASE

In this section the distinguished invariant state MR ¦ AW (WR | AWR)
is a (yR, b)-KMS state for some b > 0 (in other words, the reservoir is ini-
tially in thermal equilibrium at inverse temperature b).

The inner product (X | B)=Tr(XgB) makes B(K) into Hilbert space,
denoted l2(K). Note that B(K) acts naturally on l2(K) by right multi-
plication. This defines a representation pS: B(K)QB(l2(K)). Let
JS: l2(K)Q l2(K) be defined by JS(X)=Xg, and let l2+(K) be the set of
all positive X ¥ l2(K). The algebra pS(B(K)) is in standard form on the
Hilbert space l2(K), and its natural cone and modular conjugation are
l2+(K) and JS.

The representation pS extends to a representation p: MQ

B(l2(K) éHR) by

p(B é C)=pS(B) é C. (3.7)

The von Neumann algebra p(M) is in standard form on the Hilbert space
l2(K) éHR. The natural cone and the modular conjugation are

H+=l2+(K) éH+
R, J=JS é JR.
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The standard Liouvillean, Ll, is the unique selfadjoint operator on
l2(K) éHR such that

p(y tl(A))=e itLlp(A) e−itLl, e itLlH+=H+.

(Ll implements the dynamics in the representation p and preserves the
natural cone). One easily shows that

Ll=L0+lp(V)−lJp(V) J, (3.8)

where

L0=[K, · ] é 1+1 é LR (3.9)

see, e.g., ref. 10.
Consider the projection PL :=1 é |WR)(WR | on the Hilbert space

l2(K) éHR. We identify l2(K) with Ran PL by l2(K) ¦ BQ B é WR.
Obviously, for X, B ¥ l2(K),

(X é WR | e−itL0e itLlB é WR)=TrK(XgPLe−itL0e itLlPLB).

We again postulate existence of the Van Hove limit.

Assumption 3.A. There exists an operator CL: l2(K)Q l2(K) such
that for t \ 0,

lim
lQ 0

PLe−itL0/l
2
e itLl/l

2
PL=e itCL. (3.10)

A Fermi Golden Rule computation yields that

CL=lim
E q 0

C
e ¥ sp([K, · ])

1e([K, · ]))(p(V)−Jp(V) J)

×(e+iE−L0)−1 (p(V)−Jp(V) J) 1e([K, · ]),

(3.11)

and indeed one can prove this formula under very general conditions. (4, 9)

The operator CL is called the Level Shift Operator for the standard
Liouvillean. The operator [K, · ]+l2CL predicts location of eigenvalues
and resonances of Ll to the 2nd order of perturbation theory and has been
an important tool in the recent works on return to equilibrium. (3, 7, 8, 15, 19, 21)

We are interested in relation between CL and the Davies generator CH.
Obviously, as algebras, B(K) — l2(K)=:V. Let c: VQV be the linear
invertible map defined by

c(B) :=Be−bK/2. (3.12)
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Theorem 3.1. Assumption 2.A holds if and only if Assumption 3.A
holds. If the assumptions hold, then

CH=c−1 p CL p c. (3.13)

Remark. Explicitely, for B ¥B(K) — l2(K), we have CH(B)=
CL(Be−bK/2) ebK/2.

Proof. The Araki perturbation theory (2, 10) yields that

Y0 :=e−bK/2 é WR ¥Dom(e−b(L0+lp(V))/2),

that the vector

Yl :=e−b(L0+lp(V))/2Y0 (3.14)

belongs to Ker Ll, and that Yl=Y0+O(l). For X, B ¥B(K) — l2(K) we
have

TrK éHR
(X é |WR)(WR | y

−t
0 y

t
l(B é 1))

=(Xg é WR | e−itL0e itLl(B é 1) e−itLle itL01 é WR)

=TrK(XPLe−itL0e itLl(pS(B) é 1) e−itLle itL01 é WR)

=TrK(ebK/2X[PLe−itL0e itLl(pS(B) é 1) e−itLle itL01 é WR] e−bK/2)

=(XgebK/2 é WR | (pS(PLe−itL0e itLl(pS(B) é 1)

× e−itLle itL01 é WR) é 1) e−bK/2 é WR)

=(XgebK/2 é WR | e−itL0e itLl(pS(B) é 1) e−itLle itL0e−bK/2 é WR)

=(XgebK/2 é WR | e−itLe itLl(B é 1) e−bK/2 é WR)+O(l)

=(XgebK/2 é WR | PLe−itLe itLlPLBe−bK/2 é WR)+O(l)

=TrK(X[PLe−itL0e itLlPLBe−bK/2] ebK/2)+O(l)

uniformly for t \ 0. Hence, for X, B ¥B(K) — l2(K),

TrK(XPHy
−t
0 y

t
lPHB)=TrK(X[PLe−itL0e itLlPLBe−bK/2] ebK/2)+O(l)

uniformly for t \ 0. Since dimK <., we conclude that for a given t the
limit

lim
lQ 0

PLe−itL0/l
2
e itLl/l

2
PL=: T tL
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exists iff the limit

lim
lQ 0

PHy
−t/l2

0 y t/l
2

l PH=: T tH

exists. Moreover, if the limits exist, then

T tH=c
−1
p T tL p c.

In particular, T tH is a semigroup iff T
t
L is a semigroup and their generators

(CH and CL respectively) satisfy (3.13). L

4. NONEQUILIBRIUM CASE

We now consider the case where the reservoir is not in thermal equi-
librium, namely where the invariant state

MR ¦ AW (WR | AWR) (4.15)

is not a (yR, b)-KMS state for any b. A typical example is a free Bose or
Fermi gas with quasi-free initial state whose energy density is different
from Planck’s law. Another example is a multithermal reservoir where

MR=MR1
é · · · éMRM

,
yR=yR1 é · · · é yRM ,
WR=WR1

é · · · é WRM
,

MRk
¦ AW (WRk

AWRk
) is a (yRk , bk)-KMS state for some bk > 0, and not

all bk are the same. This case has attracted considerable attention in the
recent literature on nonequilibrium quantum statistical mechanics.

The standard Liouvillean is again well defined and given by (3.8).
However, in nonequlibrium case and for l ] 0, Ll typically will have no
point spectra. In particular, zero will not be an eigenvalue of Ll. We recall
that Ker Ll={0} iff Wg-dynamical system (M, yl) has no normal, invari-
ant states. Hence, in nonequilibrium case one expects that CL will have no
real eigenvalues and hence that CH and CL are not isospectral. In fact, in
nonequilibrium case one expects no direct relation between CH and CL.

The spectral approach to nonequilibrium quantum statistical mechan-
ics has been recently proposed in ref. 18. The basic object is a non-self-
adjoint generator of dynamics called C-Liouvillean. This operator is
defined as follows.

Assume that WR is a cyclic (and hence separating) vector for MR and
let D be the corresponding modular operator. We assume that the operator

(1 é D1/2) p(V)(1 é D−1/2),
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initially defined on M1 é WR … l2(K) éHR, extends to an element of M.
We denote this element by p(V)D and set L0 :=L0,

Ll=L0+lp(V)−lJp(V)D J. (4.16)

The operator Ll is called the C-Liouvillean of the system S+R. Note that
except in trivial cases p(V)D is not self-adjoint, and hence Ll is also not self-
adjoint. Note also that Ll generates a C0-semigroup on l2(K) éHR, that
Ll(1 é WR)=1 é WR, and that for all A ¥M,

p(y tl(A)) 1 é WR=e itLlp(A) 1 é WR,

see ref. 18 for details.

Assumption 4.A. There exists an operator CC: l2(K)Q l2(K) such
that for t \ 0,

lim
lQ 0

PLe−itL0/l
2
e itLl/l

2
PL=e itCC. (4.17)

A Fermi Golden Rule computation yields

CC=lim
E q 0

C
e ¥ sp([K, · ])

1e([K, · ])(p(V)−Jp(V)D J)

×(e+iE−L0)−1 (p(V)−Jp(V)D J) 1e([K, · ]),

(4.18)

and one can prove this formula under very general conditions. (9) As
expected, the operator [K, · ]+l2CC predicts the location of resonances of
Ll to the second order of perturbation theory. (18) The operator CC is called
the Level Shift Operator for the C-Liouvillean.

Theorem 4.1. Assumption 2.A holds if and only if Assumption 4.A
holds. If the assumptions hold, then

CH=CC.

Proof. The identities

TrK(XPLy
−t
0 y

t
lPL)=TrK éHR

(X é |WR)(WR | y
−t
0 y

t
l(B é 1))

=(Xg é WR | e−itL0e itLl(pS(B) é 1) 1 é WR)

=(Xg é WR | e−itL0e itLlB é WR)

=TrK(XPLe−itL0e itLlPL),
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yield that

PHy
−t
0 y

tPH=PLe−itL0e itLlPL, (4.19)

and the result is immediate. L

We remark that C-Liouvillean is also well-defined in the thermal equi-
librium and that in this case

Ll=eb(L0+lp(V))/2Lle−b(L0+lp(V))/2, (4.20)

see ref. 18. Theorem 3.1 can be also proven using relations (4.19) and (4.20)
and the argument of Section 5.6 in ref. 10.

5. SOME REMARKS

Theorem 3.1 extends to a large class of unbounded perturbations V.
All what is needed is that (M, yl) and Ll are well-defined and that the
basic results of Araki’s perurbation theory hold. The recent result (10) gives a
set of sufficient conditions. Consider an unbounded self-adjoint operator V
onK éHR and assume:

(1) V is affiliated withM.
(2) L semi

l is essentially self-adjoint Dom(L semi
0 ) 5Dom(V) for |l| < 1.

(3) Ll is essentially self-adjoint on Dom(L0) 5Dom(p(V)) 5
Dom(Jp(V) J) for |l| < 1.

(4) ||e−blp(V)/2Y0 || <. for |l| < 1.

Then the results of ref. 10 yield that Theorem 3.1 holds with the same
proof for the unbounded perturbation V. In particular, Theorem 3.1 holds
for Pauli–Fierz systems with bosonic reservoirs.

The proof of Theorem 4.1 requires no estimates and follows from the
identity (4.19). Obviously, this theorem holds whenever C-Liouvillean can
be meaningfully defined, see ref. 9.

The results of this note bridge the gap between the large body of liter-
ature on Markovian semigroups for open quantum systems and the recent
investigations of open quantum systems based on algebraic and spectral
techniques. The main objects of the two approaches—the Davies generator
and the Level Shift Operator for the standard and C-Liouvillean—deter-
mine each other and hence the results of one approach can be used in the
context of the other. This link is exploited in detail in the forthcoming
article. (9)

Finally, we mention an early work (17) where the relation between CH
and CL has been studied. In this work one can find an algorithm how to
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construct CH/L from CL/H. This algorithm can be also used to prove
Theorem 4.1. (25) The direct proof of Theorem 3.1 given in this note is
however considerably simpler.
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422 Dereziński and Jakšić
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